.

.
Library of Professor Richard A. Macksey in Baltimore

POSTS BY SUBJECT

Labels

Wednesday, August 15, 2012

Alan Cantwell-Bacteria, Cancer & the Origin of Life


Bacteria, Cancer & the Origin of LifeBy Alan Cantwell, Jr., M.D.

Is new life merely just the beginning of eventual death, as scientists believe? Or is death the beginning of “eternal life,” as religions teach? Or could life be a never-ending cycle of life/death/life/death reincarnations? Can new life develop from non-living things? Or was all life and the universe created eons ago by the Creator, or through some freak accident of the cosmos? Where did I come from? What will happen to me after death? These are questions human beings have attempted to answer for centuries.
New Dawn No. 81 (November-December 2003)



  • Nanobacteria, NASA and Astrobiology 
  • Quorum Sensing and Communication Between Bacteria 
  • Viruses, Bacteria, and the Beginnings of Life 
  • Creating “life” in the Laboratory 
  • Cancer, New Life, and Reich’s “T-Bacilli” 
  • Pleomorphism and the Classification of Bacteria 
  • Cancer and the “Cancer Microbe” 
  • Body Blood Bacteria
  • Science, Soul, Spirit, and Immortality



Nanobacteria, NASA and Astrobiology     Robert Folk is a geologist who specialises in microscopic examinations of limestone. Working in Italy in the 1980s with a new scanning electron microscope (SEM) with magnifications up to 100,000X, he repeatedly came across “hordes of tiny bumps and balls” entombed within the rock that he initially passed off as artefacts or laboratory contamination, as had every other geologist using the SEM.
     However, after a year of doubts and some reading in microbiology, Folk learned that exceedingly small cells called ‘ultramicrobacteria’ did in fact exist. With further microscopic work, he realised the enormous numbers of tiny grape-like and chain-like clusters were indeed bacteria. Most amazing was these “nanobacteria” could be easily cultured as common forms of bacteria, known as cocci, bacilli, staphylococci and streptococci.
     His first scientific presentation of these astounding findings was met with “stony silence” and “howls of disbelief” from many microbiologists. To this day, some scientists contend these so-called nanobacteria are simply too small to contain the necessary genetic material for life.
     In microbiology, the ultramicroscopic bacteria are regarded as stressed or resting forms of big bacteria, and are thought to be both rare and dormant. Geologists prefer the spelling “nannobacteria” to conform with the spelling of extremely tiny “nannofossils”, a common term in geology dating back to the nineteenth century.
     But Folk claims nanobacteria are enormously abundant in minerals and rocks and they form most of the world’s bio-mass. If so, how could they have been missed for so long? Folk says microbiologists have little or no interest in bacteria found in soils or rocks; and for fifty years it has been standard microbiological dogma that bacteria smaller than 0.2 micrometers cannot exist.
     Size does matter, even when discussing the tiniest forms of life. The term “ultramicroscopic” is applied to bacterial cells smaller than 0.3 micrometers. At this size, bacteria are still barely visible as the tiniest of dots discernable with the light microscope. The ordinary light microscope can magnify objects up to 1000X and objects smaller than 0.25 micrometers cannot be seen. The electron microscope is able to photograph objects at magnifications of 300,000X, or higher.
     Nanobacteria are the smallest of living creatures, measuring in the 0.05 to 0.2 micrometer range (a micrometer is 1/1000 of a millimeter). This puts nanobacteria as an intermediate life-form between normal bacteria and viruses. Viruses are around 0.01 to 0.02 micrometers in size and cannot be seen with the ordinary light optical microscope.
     The size of bacteria, nanobacteria and viruses is exceedingly important to bear in mind because it is connected to more than a century of microscopic study into the germ origin of infectious disease. Furthermore, the “dividing line” between bacteriology and virology has been the customary “filter pore size” of 0.2 micrometers. Microbiologists have always assumed such a filter pore will catch all bacteria, and fluid running through a 0.2 micrometer filter pore would be bacteria-free.
     When geologists photographed 0.1 micrometer “bumps” they passed them off as contamination, never believing they could be living bacteria. Folk says, “You see what you are looking for and what you have faith in!”
     By the early 1990s these nanobacteria were investigated by a team of biologists in Finland, headed by Olavi Kajander. Since that time nanobacteria have been found in kidney stones, dental plaque, the gall bladder, in calcified arteries and heart valves, and in certain skin diseases. Kajander’s team also reported nanobacterial forms as small as 0.05 microns in human blood, and have retrieved DNA on particles as small as 0.2 microns. Most disturbing are reports showing nanobacterial contamination of fetal bovine serum used in the production of many viral vaccines. This adds concern to the controversial problem of “vaccine-induced illness” and the fear some people have of contaminated vaccines.
     Are nanobacteria connected with the origin of life on Earth? Nanobacteria-like “fossils” have been observed in several meteors, such as the Martian meteorite found on the Antarctic ice shelf in 1984. This meteorite is believed to be 4.5 billion years old, and is thought to have left Mars 16 million years ago. Supporters of nanobacteria research insist these bacteria have implications for how life began on Earth and other planets like Mars.
     NASA, the US space agency, has an Astrobiology Roadmap program, which consists of more than 200 scientists and technologists. Astrobiology addresses three basic questions: How does life begin and evolve? Does life exist elsewhere in the universe? What is the future of life on Earth and beyond?
     According to Roadmap, there are revolutionary changes going on in the world of microbiology.
     “Our ongoing exploration has led to continued discoveries of life in environments that have been previously considered uninhabitable. For example, we find thriving communities (of microbes) in the boiling hot springs of Yellowstone, the frozen deserts of Antarctica, the concentrated sulfuric acid in acid-mine drainages, and the ionizing radiation fields in nuclear reactors. We find some microbes that grow in the deepest parts of the ocean and require 5000 to 1000 bars of hydrostatic pressure. Life has evolved strategies that allow it to survive even beyond the daunting physical and chemical limits to which it has adapted to grow. To survive, organisms can assume forms that enable them to withstand freezing, complete desiccation, starvation, high levels of radiation exposure, and other physical and chemical challenges.”
     In addition, astrobiologists tell us that huge amounts of bacteria and possibly viruses are contained in Earth’s upper atmosphere. It is estimated a ton of these organisms arrive on Earth every day!

Quorum Sensing and Communication Between Bacteria     In an amazing discovery, scientists have learned that bacteria can communicate with each other. When enough microbes gather to form a “quorum”, they release a hormone (a pheromone) which allows them to “talk” to one another and plan strategies, and even make some genetic changes to allow survival. Not only do similar bacteria talk to each other, they also talk between species.
     Barbara Bassler, a molecular biologist at Princeton University, is a leading pioneer in quorum sensing. Writing about her work for Wired magazine (April 2003), Steve Silberman says that communicating microbes are able to collectively track changes in their environment, conspire with other species, build mutually beneficial alliances with other types of bacteria, gain advantages over competitors, and communicate with their hosts – the sort of collective strategizing typically ascribed to bees, ants, and people, not to bacteria.”
         Quorum sensing has profound implications in the war against disease, particularly now that so many bacteria are becoming resistant to antibiotics. According to Silberman, “Bassler’s research points to new ways of fighting disease that will aim not to kill but to scramble data in the bacterial network. One approach would be to block the receptors that receive the molecular signals so that cells never become virulent; another would target the DNA-replication mechanisms set in motion inside cells when the signals are received.”
     Not everyone in microbiology is convinced bacteria can communicate. But if some clairvoyants can talk to dead people, why can’t bacterial cells talk to one another? And don’t all the cells in our body “talk” to each other in some way?

Viruses, Bacteria, and the Beginnings of Life     Charles Darwin’s Origin of the Species was published in 1859 and is the seminal book giving rise to biology, as well as to the scientific and religious controversies that continue to this day. People were incensed to think humans could have arisen from monkeys and apes. Now some scientists think we developed side-by-side along with bacteria.
     Every human, plant and animal cell has genetic material inside a nucleus. Surrounding the nucleus is a jelly-like cytoplasm which contains the “mitochondria”, which are considered to be tiny chemical factories that process the nutrients which provide energy to the cell.
     Evolutionary biologist Lynn Margulis of the University of Massachusetts believes the ancestors of all life are the bacteria, which fused into higher forms of life. Margulis follows in the footsteps of American biologist Ivan Wallin, who in 1927 first claimed mitochondria originated as free-living bacteria. Wallin thought ancient bacteria and their host cells evolved together to establish an inseparable symbiotic partnership. He even claimed to have removed mitochondria from cells and to grow them. Needless to say, Wallin’s ideas were ridiculed and almost universally rejected.
     But Margulis also theorises the origin of the mitochondria in our cells is derived from separate organisms that long-ago moved into other cells and entered a symbiotic (sort of a co-dependant) relationship with multi-cellular forms of life. Remarkably, the DNA in the mitochondria is totally different from the DNA in the rest of the cell, which lends support to this idea.
     Margulis subscribes to the vision that the Earth, as a whole, is a living being. In What is Life? (1955), co-written with Dorion Sagan, she maintains all life is bacteria – or descends from bacteria. In short, life is bacteria. And, as such, bacteria are closer to immortality than animals with bodies.
     Bacteria account for the vast majority of life forms on Earth, and are essential to maintain the conditions for life on the planet. They are the smallest living cells that can replicate without a nucleus, and are indeed the building-blocks of life. In comparison, the fertilised human egg is about 150-200 micrometers in size – about the size of a grain of sand and barely visible with the naked eye.
     What can microbes tell us about our origin and our destinies? And could we be immortal like our one-celled ancestors?

Creating “life” in the Laboratory     What is the lowest form of life? And can life be created from non-life? Some scientists believe viruses are the lowest form of life. We are told viruses need to penetrate a cell and use the cell’s genes to survive. In the process, disease can be produced. But are viruses “alive” or “dead”? Scientists can’t agree.
     In 1991 Eckard Wimmer and his associates created a polio virus for the very first time – outside a cell and in a test tube. They extracted a soup of proteins from human cells, and then added genetic material from a polio virus. After a few hours, assembled polio viruses appeared in the mix.
      According to a New York Times report (Dec. 13, 1991), Wimmer was asked, is the product in the test tube living or nonliving? Some consider viruses to be simple living organisms, others consider viruses to be very complicated chemicals, said Wimmer. But “when it hits the cell it is very much alive. Some argue that one attribute of life is that it can reproduce itself. Well, that is what viruses do when they get into the cells. The debate on whether viruses are alive has been going on since they were discovered 100 years ago.”
     Although the cause of most cancers remains a mystery, research over the past half-century has focused on cancer viruses as a probable cause. With research focused on viruses, it would seem ludicrous to ask – can bacteria cause cancer?
     The mere thought of bacteria causing cancer drives most cancer experts up the wall! However, with the recent interest in nanobacteria and their discovery in the blood and in various diseases of unknown origin, the question should not be so easily dismissed.
     Furthermore, in the past decade physicians have come to accept the fact stomach ulcers can be produced by bacteria (Helicobacter pylori), and some ulcers eventually lead to stomach cancer. For many decades, it was dogma that bacteria could not live in the acid environment of the stomach. Also, pathologists could never see or detect bacteria in the stomach lining around ulcers. With the discovery of Helicobacteria and special staining techniques, doctors can now demonstrate bacteria in many ulcers – proving that microbiologists and pathologists were unable to “see” microbes, even though they are now clearly visible once they accepted the possibility microbes might be present.

Cancer, New Life, and Reich’s “T-Bacilli”     Although the origin and cause of cancer is mysterious, there is no doubt cancer is the body’s futile and often fatal attempt to create new life and new growth. That is why cancer is so intimately connected with theories about the origin of life.
     One of the most controversial physicians of the last century was Wilhelm Reich (1897-1957), a psychiatrist and cancer researcher who claimed to discover “orgone energy” – an energy that pervades the world and is intimately connected with our physical and mental well-being.
     In The Cancer Biopathy (1948), he wrote that cancer is a systemic disease caused by emotional despair and resignation and the chronic thwarting of natural sexual functioning. And this was just a few of his highly unorthodox beliefs based on his many observations and experiments.
     Reich also uncovered infectious “T-bacilli” (bacteria) in cancer that resulted from the degeneration of cancerous tissue. In his view, these bacteria formed a bridge between the living and the non-living. The T-bacilli were present in the blood and tissue before the cancer tumour developed; and these microbes were intimately connected to “bions” and the loss of biological energy. Reich’s heretical bions were the carriers of biological energy; and the staphylococcus and streptococcus germs he found connected to cancer were actually formed from the degeneration of the bions.
     Just as there is no clear dividing line between life and non-life, there is no clear boundary between healthy and diseased individuals. Reich claimed the cancer cell developed as the body’s attempt to resist the build-up of the T-bacilli in energy-depleted tissue.
     “The first step in the development of the cancer tumour is not the cancer cell… it is the appearance of T-bacilli in the tissue or in the blood.” But T-bacilli were not only found in cancer; they were also present in the blood and tissues of both healthy and sick non-cancerous individuals. However, sick and cancerous patients showed a larger number of these forms, and Reich developed a blood test to show this. T-bacilli were always found where there is degeneration of protein, and in that respect, Reich wrote: “All humans have cancer.”
     The orgone energy of the body determined the resistance of the body to these microbes. As long as the tissues and blood are “organotically strong, every T-bacillus will be destroyed and eliminated before it can propagate, accumulate, and cause damage”, wrote Reich. Because cancer germs were present in healthy people, Reich knew this would be a very difficult concept for physicians to consider and accept.
     Reich wanted scientists to look at science in a new way and to try and see it from the point of view of “energetic functionalism.”
         For example, “The bacteriologist, for instance, sees the staphylococcus as a static formation, spherical or oval in shape, about 0.8 micron in size, reacting with a bluish coloration to Gram stain, and arranged in clusters. These characteristics are important for orgone biophysics, but are not the essentials. The name itself says nothing about the origin, function, and position of the blue coccus in nature. What the bacteriologists calls ‘staphylococcus’ is, for orgone physics a small energy vesicle in the process of degeneration. Orgone biophysics investigates the origin of the staphylococcus from other forms of life and follows its transformation. It examines the staphylococcus in connection with the processes of the total biological energy of the organism and produces it experimentally through degenerative processes in bions, cells, etc.”
     Through his scientific experiments with orgone energy, Reich hoped to harness orgone for the treatment of disease and the good of humanity.
     Needless to say, Reich’s entire life’s work was considered hogwash, and a scientific inquisition eventually ensued. Branded a menace and a quack, he ran afoul of the US Food and Drug Administration (FDA) which claimed his experimental “orgone accumulator” was being used illegally to treat cancer – and that it was nothing more than a perverted sex box.
     Refusing to obey a court injunction, Reich was sentenced to prison. His books were burned, his equipment destroyed by FDA agents, and he died at the federal penitentiary at Lewisburg, Pennsylvania, in March 1957, at age 60.
     His research into the origin of life, and his belief orgone energy contained within the tiniest forms of life that could not be destroyed, make him one of the most misunderstood and hated physicians of the twentieth century.
     But, as we shall discover, there are other heretics in medicine, now mostly ignored and forgotten, who also believed cancer was connected with bacteria of human origin. Like Reich, they claimed a study of these microbes would not only lead to the infectious cause of cancer – but to a cause of life itself.
 After a century of “modern” medical science, we still don’t know the cause of cancer, heart disease, and many other chronic diseases that kill millions of people every year. The reason for this, in my view, is that medical science refuses to recognise the role that microbes (smaller than bacteria and larger than viruses) play in these diseases.
       Much of the fault lies in the dogma left over from the nineteenth century by such scientific icons as Louis Pasteur and Robert Koch, who are revered as fathers of microbiology and bacteriology. At a time when viruses, nanobacteria and astrobiology were unknown and when “the germ theory of disease” was in its infancy, both scientists held rigid views as to what was possible and not possible in biology. And neither Pasteur nor Koch could fathom the concept that living organisms might arise from non-living sources.
      Unfortunately, Pasteur (1822-1895) had no medical training. He was consumed with fermentation experiments and with proving “air germs” were the basis for human disease, although he provided no explanation for the origin of atmospheric germs or how life began on Earth. Koch (1843-1910), who discovered the bacteria that caused tuberculosis, was obsessed with classifying microbes grown in the laboratory into exact species, depending on their size, structure, physical, and chemical properties. He insisted the species that were created were pure and stable; and that species were unable to change back and forth between each other. According to Koch, each species of bacteria produced a separate and distinct disease. Each germ also had to originate from similar “parent” germs – which reproduced by dividing in half by “binary fission.”
      Not every physician of that era believed all the pronouncements of Pasteur and Koch. A few physician-scientists challenged them because they knew what was often “proven” in laboratory experiments might not always be applicable to what was going on with bacteria hidden within the human body.
      Antoine Bechamp (1816-1908) was no slouch in the science department and was well-known as a scientific rival of the famous Pasteur. The Frenchman was not only a Doctor of Medicine and Science, but at various times was also Professor of Medical Chemistry and Pharmacology, and Professor of Physics, Toxicology, and Biological Chemistry. There is also some evidence that Pasteur plagiarised much of Bechamp’s original research.
      Pasteur, however, is credited in history with saving the French beer and wine and silkworm industries, and with pasteurisation and vaccine research. Bechamp, despite his brilliance, was eventually eclipsed by the younger man. The details of the scientific controversy and plagiarism accusations are chronicled in E. Dougles Hume’s book, Bechamp or Pasteur?: A Lost Chapter in the History of Biology (1923), remarkably still in print.
       Bechamp had his own ideas concerning the origin of life and the germ theory of disease. In animal and plant cells he observed infinitesimal microscopic “granulations” that he considered the incorruptible elements of all life. After many laboratory experiments and microscopic examinations of these granules, the physician-scientist claimed these so-called “microzymas” were capable of developing into common living organisms that go by the name of bacteria.
      In his view, Pasteur’s “air germs” had nothing to do with the origin and appearance of these microzymas in tissue. In fact, Bechamp wrote that Pasteur’s air germs most likely derived from dying life-forms. Like Folk a century later [see Part One of this article], Bechamp found barely visible microzymas/bacteria in chalk and limestone that he interpreted as survivor life-forms of past ages. Although all the microzymes looked similar, they varied in their chemical abilities. Each tissue, or organ, or gland had microzymas that differed from each other.
      Hume claims Bechamp and his colleagues showed these tiny microzymas were, in reality, “organised ferments” with the potential to develop into bacteria. In this development, they passed through certain intermediary stages. Some of these intermediate bacterial stages were regarded by people like Koch as different species, but to Bechamp they were all related and derived from microzymas. Adding more heresy to Pasteur’s dogma, Bechamp wrote that without oxygen, microzymas do not die – they go into a state of rest. Bechamp preached, “Every living being has arisen from the microzymas, and every living being is reducible to the microzymas.”
      Like Bechamp, Henry Charlton Bastian’s (1837-1915) studies investigating the origin of life were closely tied into his understanding of the origin of infectious disease. He was also the last of the great scientists to uphold the theory of “spontaneous regeneration”, by concluding that life could come from non-life. Like Reich a century later, he argued that microorganisms were produced as by-products of the disease process, not as opportunistic infections, but from degenerating tissue by a process Bastian termed “heterogenesis.” Heterogenesis is the idea that living organisms can arise without parents from organic starting materials – an idea certainly not in accord with Pasteur and Koch.
      Bechamp and Bastian’s research was also a threat to the followers of Charles Darwin (1809-1882), whose evolution theories revolutionalised science. Like Pasteur, Darwin was not a medical doctor and had no training in human pathology. And while doctors like Bechamp and Bastian and others were discovering new forms of life emanating from human diseased tissue and from the bowels of limestone, Pasteur, Koch and the Darwinians simply disregarded all this in favour of their own research and pronouncements.
      Bastian paid dearly for his unorthodoxy (and for some well-publicised but failed experiments) and his once-famous name is largely forgotten. Microbiologist and science professor James Strick has recently revived interest in Bastian’s books and research and his books on the origin of life; and a six-volume set reprinting much of his work has been recently published. Strick is also the author of Sparks of Life (2000), which chronicles the famous nineteenth century scientific and bacteriologic debates over Darwinism and spontaneous generation.

Pleomorphism and the Classification of Bacteria
      Koch, famous for his tuberculosis discoveries, was rigid in his belief that a specific germ had only one form (monomorphism). And he opposed all research showing some germs had more than one form (pleomorphism) and complex “life cycles.” Thus, from the very beginning of bacteriology there was conflict between the monomorphists and the pleomorphists, with the former totally overruling the latter and dominating microbiology to this day.
      In the attempt to “classify” bacteria as the lowest forms of life known at that time, there was no consideration given to any possible “connection” between the various species of bacteria. The dogma was that a coccus remained a coccus; a rod remained a rod; and there was no interplay between them. There was no “crossing” from one species to another, and the research of the pleomophists suggesting otherwise was ignored.
       When viruses were discovered they were made separate from bacteria, although bacteria are also known to be susceptible to viral infection. Viruses were put in one box; bacteria in another. As a result, the spectacular number of “filterable” pleomorphic microbial forms that form a bridge between the “living” bacteria and the “dead” viruses are still largely unstudied and considered of no great importance in clinical medicine.
       Most doctors simply want to know the name of the microbe, if any, cultured in the lab from their specimens; and what antibiotics the germ is “sensitive” to. Thanks to Pasteur, common “skin” bacteria like cocci and bacilli are often viewed as suspicious “contaminants” or “secondary invaders” or “opportunistic infections” of no great importance as etiologic agents.
      Koch’s postulates became dogma to prove that certain bacteria cause disease, but the postulates did not work very well for viruses. And even when “filterable” pleomorphic bacteria were shown to cause disease and Koch’s postulates were fulfilled, the research was still generally ignored because such germs were not considered “valid” life-forms.
     As a result of all this dogma and rigidity, medical thought was completely turned off to the possibility cancer was caused by bacteria. But to the minds of some medical heretics, these century-old scientific beliefs were wrong, wrong, wrong.

Cancer and the “Cancer Microbe”
      As some scientists are finally realising, there is a large realm of microbial life-forms that lie between “bacteria” and “viruses.” It is this relatively uncharted never-never land of microbiology that lies at the heart of life, disease, cancer, death, regeneration, and perhaps even immortality.
      In the life of every researcher there is a person or group of people to whom a great debt is owed. In my scientific life as a practising dermatologist and as a clinical researcher, there are four women who are my icons in medical science. All four I knew personally as valued friends, and each contributed greatly to my understanding of the greatest mystery of medical science: the origin and cause of cancer.
      The combined reported research of Virginia Wuerthele-Caspe Livingston (a physician), Eleanor Alexander-Jackson (a microbiologist), Irene Diller (a cell cytologist), and Florence Seibert (a chemist famous for developing the TB skin test), is indeed a treasure-trove for anyone seeking to learn about “the cancer microbe” and the heretical microbiology of cancer. I wrote about these now deceased women in my book, The Cancer Microbe (1990), and I connected their cancer research to Bechamp’s and Bastian’s discoveries in the nineteenth century, as well as to Wilhelm Reich’s condemned cancer and orgone research.
      In 1950, Wuerthele-Caspe Livingston and Alexander-Jackson, along with John A. Anderson (head of the Department of Bacteriology at Rutgers), James Hillier (head of electron microscopy at the RCA Victor Laboratories at Princeton), Roy Allen (a cell histologist), and Lawrence W. Smith (author of a well-known pathology textbook used in medical colleges), all combined their talents to write a paper entitled “Cultural Properties and Pathogenicity Obtained from Various Proliferative and Neoplastic [cancerous] Diseases,” published in the December issue of The American Journal of the Medical Sciences. The characteristics of the cancer microbe in blood, tissue, and culture, were described in detail; and the extreme pleomorphic nature of the organism was revealed in photos taken with the electron microscope at a magnification of 31,000X.
      The cancer microbe (which she later called Progenitor cryptocides) was filterable through a pore designed to hold back bacteria. But in the filtrate were “virus-sized” microbial forms, which grew in time to the size of conventional bacteria. For the next two decades these four women and their colleagues continued publishing details about the microbiology of cancer. Livingston’s two books, Cancer: A New Breakthrough (1972) and The Conquest of Cancer (1984) are unfortunately now out-of-print.
      Livingston believed everyone carried cancer microbes in their blood and tissues. And the microbe was essential for life. In 1974, she discovered some cancer-associated bacteria produced an HCG-like hormone – the human choriogonadotropin hormone, which is an essential hormone needed to start life in the womb. But she also thought the microbe was the germ that did most people in as they aged. The microbe was Mother Nature’s built-in terminator to force old people off the planet and to make room for new life on the planet.
      At the time of her death in 1990, Livingston was widely regarded among the cancer establishment as a quack. Even though her research was published for three decades in reputable medical journals, the American Cancer Society still claims her “cancer microbe” does not exist. An ACS-sponsored Internet web page states: “One report on the bacteria Progenitor cryptocides, which Dr. Livingston-Wheeler claimed caused cancer, found that the bacteria does not exist but is actually a mixture of several different types of bacteria which Dr. Livingston-Wheeler labelled as one.” Who was the author of the report claiming her microbe did not exist? According to the ACS, the author was “anonymous.”
      Over the past four decades I have tried to keep this research alive by showing pleomorphic cancer bacteria in human cancer and in certain other diseases of unknown origin. For readers with Internet access, some of my photos of cancer microbes are presented on the web site of the on-line Journal of Independent Medical Research ( www.joimr.org ); and abstracts of my medical publications can be found on the National Library of Medicine’s “PubMed” web site (www.ncbi.nlm.nih.gov/PubMed/ ). Simply type in “A Cantwell + cancer bacteria”.
      In my research I have observed germs grown in the lab from cancerous tissue. Frequently they grow as simple round cocci, or as a mixture of cocci and rod-shaped bacilli, and rarely as streptococci. From diseases like scleroderma, I have seen “old” cultures evolve into peculiar and highly pleomorphic fungus-like “actinomycete” organisms, or evolve into bacteria resembling tuberculosis-type bacteria. Not infrequently, expert microbiologists could not agree on what to name these pleomorphic bacteria.
      I have seen microbes change from one species to another, depending on what they are fed in the laboratory – staphylococcus germs that turn into rod-forms of corynebacteria and back again to “pure” staphylococcus, depending on the lab media for growth. But most importantly, I have seen these bacteria in specially-stained (acid-fast stain) tissue sections made from cancerous tissue, indicating these microbes are not contaminants falling out of the air. And decade after decade all cancer microbe research remains forgotten, ignored, and overlooked because physicians cannot conceive of such bacteria as causing cancer.
      Milton Wainwright at the University of Sheffield, UK, is a rare microbiologist who has written sympathetically about the bacteriology of cancer, titling some of his recent publications: “Nanobacteria and associated ‘elementary bodies’ in human disease and cancer” (1999); “The return of the cancer germ; Forgotten microbiology – back to the future” (2000); “Highly pleomorphic staphylococci as a cause of cancer” (2000); and “Is this the historical ‘cancer germ’”? (2003).
      In, Can Bacteria Cause Cancer?: Alternative Medicine Confronts Big Science (1997), David J. Hess charts the history of bacteria as etiological agents in cancer. An anthropologist at Renssalear University, he claims this research has not only been forgotten or disregarded, but actively suppressed. Hess cites financial and professional interests, as well as more general cultural factors to help explain the suppression.

Body Blood Bacteria
      The idea that the blood contains bacteria related to cancer has been repeatedly raised by various cancer microbe researchers. But the idea was never taken seriously because bacteria grown from cancer patients were never considered anything more than inconsequential bacteria like staph, strep, and various common bacilli of no etiologic significance. Furthermore, these bacteria are believed to be frequent laboratory ‘contaminants.’ Physicians still expect disease-causing bacteria to be of a specific species type and to cause a “specific” disease. And medical doctors believe each form of cancer is “different.” The variety of different species of pleomorphic bacteria recovered from various forms of cancer makes physicians highly dubious about a bona fide cancer microbe specific for cancer.
      In a series of papers (1970-1979) using the electron microscope and various testing procedures, an Italian team of researchers headed by Guido G. Tedeschi showed that the erythrocytes (red blood cells) and the blood platelets of both normal and diseased patients are cryptically infected with pleomorphic bacteria. Electron-dense “granular bodies” were found within the erythrocytes, and a variety of microbial forms and species were reported as mycoplasma-like and corynebacteria-like L-forms of bacteria, staphylococcus epidermidis, micrococci, cocci, and cocco-bacillary forms.
      Such microbes are similar to what various cancer microbe researchers have reported over the past century. Some of Tedeschi’s microbes were acid-fast, a staining quality characteristic of Livingston’s cancer microbe.
      All of this indicates that human blood is definitely not sterile, and should raise suspicion these tiny blood bacteria could be involved in the production of disease – a conclusion Wilhelm Reich came to a half-century ago. Like Reich, Tedeschi’s team suggested the evolution of cocci and diphtheroids taking origin from cell-wall-deficient forms seems not to be related to a particular state of illness, but to be the consequence of a generalised crypto-infection.
      A more recent study entitled “Are there naturally occurring pleomorphic bacteria in the blood of healthy humans?”, by R.W. McLaughlin and associates in the Journal of Clinical Microbiology (December 2002), confirms the presence of a wide diversity of microorganisms within the blood of healthy people. And with new research showing nanobacteria in the blood, it is apparent there is much to learn about the bacteriology of the blood and what it contains normally and what it contains in disease.
      As they have done for a century, microbiologists will undoubtedly quibble about what to name these organisms. But what is much more important than a name is to determine what they “do” – not in the laboratory, but in the human body. What is the energy force that allows these microbes to exist in harmony with us? And what turns them into killers?

Science, Soul, Spirit, and Immortality
      Helena P. Blavatsky (1831-1891) is the controversial founder of the science of Theosophy, a philosophical and spiritual group with a keen interest in the origin of life. In researching this article, I came across her name on a web page connected to Bastian’s nineteenth century studies on tiny bacteria in limestone. Her ideas about the origin of life are amazingly prophetic in light of current findings of nanobacteria in microbiology and geology, and her idea of a “vital force” seems similar to Reich’s “orgone energy.”
      Blavatsky wrote: “Life is not the expression of the organism, but, on the contrary, the organism is the expression of some prior and indestructible vital force. Nothing ever dies. Life’s opposite is not death, but latency. Indeed… one is compelled to ask whether all humanity, past and future is not imprisoned in latent form in the rocks and sands of our terrestrial sphere.”
      In The Secret Doctrine (1888), she claims: “Everything that is, was, and will be, eternally IS, even the countless forms, which are finite and perishable only in their objective, not in their ideal Form. They existed as Ideas, in the Eternity, and, when they pass away, will exist as reflections.”
      Science has little or nothing to say about spirit, soul, and the hereafter. And skeptics are always seeking “proof.” But if a disease like cancer is indeed caused by microscopic bacteria, it would indicate physicians have been unable to see what was quite plain for some nineteenth and twentieth century scientists to observe using simple light microscopy. And with powerful electron microscopes there is now little excuse for not “seeing” bacteria. With this in mind, it would behoove scientists, especially cancer experts, to do a little soul-searching (pun intentional).
      In addition, scientists cannot seem to agree where life begins. So can we trust them completely to know when life ends? If human life continues after death, it must exist largely as energy. And can energy ever be destroyed? Einstein tells us matter and energy are interconnected and essentially different forms of the same thing. And physicists are excited about the possibilities of quantum physics, which is beyond my ken. Professor of Mathematical Physics, Frank Tipler, confidently proclaims physics will lead to the immortality of humankind. In his controversial book The Physics of Immortality (1994) he states, “Either theology is pure nonsense, a subject with no content, or else theology must ultimately become a branch of physics… The Goal of physics is understanding the ultimate nature of reality. If God is real, physicists will eventually find Him/Her.”
      In the Bible, God tells us we came from dust – and to dust we shall return, which is not terribly encouraging for those not confident about an afterlife. But what if dust contained elements and building blocks that could re-make life over and over again for all eternity? And isn’t Earth basically a big pile of dust? And couldn’t this be “God’s little secret” He wants us to unravel?
      And what is life if it is not pulsating with cosmic energy? If the tiniest of life forms can exist in meteors millions or billions of years old, and if we are composed and descended from the tiniest forms of life, why can’t we live forever?
      All we might need is a speck of dust and a little “faith” to ignite that spark of life that would get us going again.
Dr. Cantwell is a researcher on AIDS, cancer, and biological warfare. His book on man-made AIDS, Queer Blood: The Secret AIDS Genocide Plot, is available through the New Dawn Book Service. Many of his writings can be found on google.com and the New Dawn web site. His published medical papers are listed on PubMed.
=======================
Do Killer Microbes Cause Breast Cancer?
By Alan Cantwell, Jr., M.D.
Suppressed and Forgotten Research Could Hold the Key to a Cure for this Dread Disease
Despite a century of cancer research the cause of breast cancer remains unknown. Age, diet, stress, hormone factors, genetic predisposition, and cancer viruses are all suspected as possible causative factors, but totally ignored are infectious bacteria which have been implicated in breast cancer and other forms of cancer.
A century ago when major diseases like tuberculosis, leprosy, and syphilis were discovered to be bacterial (not viral) infections, many physicians suspected bacteria might also cause cancer. At the close of the nineteenth century (when the science of microbiology was in its infancy), many different microbes were cultured from cancer. Variously called "cancer coccidia," "sporozoons" and "cancer parasites," a few of these microbes produced cancer tumours when injected into animals. But many did not, and most doctors finally assessed these cancer germs as laboratory "contaminants" or as "secondary invader microbes" that infect the tissue after the cancer is already formed.
The idea of a cancer parasite was finally dismissed in 1919 by noted American pathologist James Ewing. In his popular textbook, Neoplastic Diseases, he declared: "Few competent observers consider it (the parasitic theory) as a possible explanation in cancer." In Ewing's opinion, cancer did not act like an infection. Therefore, he concluded that microbes couldn't possibly cause it. He wrote: "The general facts of the genesis of tumours are strongly against the possibility of a parasitic origin."1 Subsequently, few doctors dared to contradict Ewing by investigating bacteria in cancer.
Nevertheless, during the 1920s a few persistent physicians like pathologist John Nuzum of the University of Illinois College of Medicine; surgeon Michael Scott from Butte, Montana; and obstetrician James Young of Edinburgh, Scotland, continued to publish research showing that bacteria were implicated in breast cancer and other forms of cancer.
Working independently of one another, all three researchers cultured unusual bacteria from breast cancer, as well as from breast cancer tumours in mice. The peculiar growth of the "pleomorphic" cancer germ defied the established laws of microbiology by its ability to change shape and form, depending on how it was cultured in the laboratory, as well as the amount of oxygen supplied for growth and the age of the culture.
At first, the germ was barely visible as tiny round coccal forms. Later, these cocci enlarged into rod-shaped bacteria, which could connect together to form chains resembling a fungus. Small cocci could also enlarge into larger yeast and fungal-like spore forms.
Nuzum grew his "micrococcus" from 38 of 41 early breast cancers, and from the cancerous lymph nodes and metastatic tumours resulting from spread of the cancer to other parts of the body.2,3 During his 6 years of intensive bacteriological study, he learned the microbe could pass through a filter designed to hold back bacteria, indicating that some forms of the microbe were as small as the size of some viruses. With special stains he detected these small round coccoid forms within the breast cancer tumour cells. Although Nuzum couldn't produce cancer tumours in mice, he was able to induce breast cancer tumours in 2 of 5 dogs injected with the microbe.
In a dangerous human experiment he injected the groin of a 70-year-old man with the bacteria he cultured from breast cancer. After 62 injections over an 18-week period, a skin cancer formed in the man's groin. This experiment showed that breast cancer microbes were also capable of producing a different kind of cancer, such as skin cancer.3
Young found his microbe in 16 cases of breast cancer, and in two mice with breast cancer. He identified "spore forms" and clumped "spore balls" in microscopic sections prepared from the mouse tumours.4,5
Scott described three stages in the life cycle of his parasite: rod forms, spore or coccus-like forms, and large spore-sacs resembling a fungus.6,7 He treated cancer patients with an effective antiserum against these microbes, and spent the rest of his life trying to alert his colleagues to the infectious cause of cancer. But the antagonism of the medical profession to Scott's cancer parasites and his antiserum was overwhelming, and he died a forgotten man.
During the last half of this century cancer microbe research was barely kept alive by a quartet of women, now all dead. The published research of Virginia Wuerthele-Caspe Livingston-Wheeler (a physician), Eleanor Alexander-Jackson (a microbiologist), Irene Diller (a cellular biologist) and Florence Seibert (a chemist) provides indisputable evidence that bacteria are implicated in cancer.
Livingston, who never let the male-dominated medical profession intimidate her, independently discovered the cancer microbe in the late 1940s and never stopped talking about it until her death in 1990, at the age of 84. Aided by Alexander-Jackson, who supplied the bacteriologic expertise, they became an unstoppable research team.8-12 The two women found a special stain (the acid-fast stain) that allowed the microbe to be recognised in culture and within the cancer tumour. Like the researchers back in the 1920s, they confirmed the microbe was filterable; and electron microscopic photos provided further proof that the filterable forms were indeed viral-size. Livingston named the microbe "Progenitor cryptocides" (Greek for the hidden-killer), which angered cancer experts, microbiologists, and American Cancer Society spokespersons, all of whom insisted the cancer microbe did not exist!
In the 1950s Irene Diller of the Institute for Cancer Research at Fox Chase, Philadelphia, discovered fungus-like microbes in cancer cells. Joining forces with the Livingston team, Diller worked with specially bred mice with a proven cancer incidence. By injecting them with microbes cultured from breast cancer and other tumours, she was able to more than double the cancer incidence of the mice.13
She injected healthy animals with cancer bacteria. When cancer tumours developed she successfully cultured the microbe from the tumours - thus proving that these bacteria were implicated in the production of cancer. Utilising Livingston's methods, Diller also grew the microbe from the blood of cancer patients.
In the early 1960s Florence Seibert became so impressed with Diller's research that she quit retirement to help prove that bacteria cause cancer. Back in the 1920s Seibert devised a method to make intravenous transfusions safe by eliminating contaminating ubiquitous bacteria. Later, as one of the foremost authorities investigating the chemistry and immunology of the acid-fast bacteria that cause tuberculosis, she perfected the skin test for tuberculosis that has been used worldwide ever since. In 1938, she was awarded the famed Trudeau Medal, the highest prize given to tuberculosis research.
Experiments conducted by Seibert and her research team showed these acid-fast and TB-like cancer microbes were not laboratory contaminants because they were able to isolate bacteria from every piece of tumour (and every acute leukemic blood) they studied.14
Fig. 1: A collection of tiny, round, coccoid forms identified within the tissue sections from a breast cancer tumors.
Acid-fast stain, magnified 1000 times.
In her autobiography, Pebbles on the Hill of a Scientist, published privately in 1968, she wrote: "One of the most interesting properties of these bacteria is their great pleomorphism. For example, they readily change their shape from round cocci, to elongated rods, and even to thread-like filaments depending upon what medium they grow on and how long they grow. This may be one of the reasons why they have been overlooked or considered to be heterogenous contaminants... And even more interesting than this is the fact that these bacteria have a filterable form in their life cycle; that is, that they can become so small that they pass through bacterial filters which hold back bacteria. This is what viruses do, and is one of the main criteria of a virus, separating them from bacteria. But the viruses also will not live on artificial media like these bacteria do. They need body tissue to grow on. Our filterable form, however, can be recovered again on ordinary artificial bacterial media and will grow on these. This should interest the virus workers very much and should cause them to ask themselves how many of the viruses may not be filterable forms of our bacteria."
Seibert's provocative papers, some emanating from the prestigious Annals of the New York Academy of Sciences, should have caused a stir. But with the quartet slowly closing in on the infectious cause of cancer, funds from previous supporters (like the American Cancer Society) suddenly dried up. All cancer microbe researchers eventually discovered that studying cancer bacteria was the kiss of death as far as funding was concerned. And without adequate funding, this type of cancer research was made more difficult.
But coming from thirty years of research into the acid-fast bacteria that cause tuberculosis, Seibert knew that the discovery of a pleomorphic and acid-fast microbe in cancer was tremendously important. She fervently believed that knowledge of this microbe would be instrumental in developing a possible vaccine and more effective antibiotic therapy against cancer. In Pebbles she confided: "It is very difficult to understand the lack of interest, instead of great enthusiasm, that should follow such results, a lack of certainty not in the tradition of good science. The contrast between the progress made in tuberculosis where we know the cause, where we have good general diagnostic tests, where we have a vaccine and effective antibiotic controls, and that made in cancer with the millions invested, is very striking. Some dedicated scientists should indeed find it rewarding to confirm or deny these painstaking and time-consuming experiments, for the sake of establishing the first necessary step in the important problem of the etiology of cancer."
Like the other women, Seibert observed the virus-like forms of the cancer microbe within the nucleus of the cancer cells. She theorised this infection could disrupt and transform nuclear genetic material that could lead to malignant change. Even though cancer microbes might appear to be simple and common microbes, their ability to infiltrate the nucleus of cells meant they were far from harmless.
In 1990, at the age of 92, Florence Seibert was inducted into the National Women's Hall of Fame, along with Barbara Jordan (Government), Billie Jean King (Athletics) and Margaret Bourke-White (Arts). When she died the following year her passage was noted in Time and People magazines, and in major newspapers like The Los Angeles Times. All the obituaries mentioned her contributions to the safety of intravenous fluids and her great achievement with the TB skin test. But not a word was written about her cancer microbe research, to which she devoted the last thirty years of her life.
Each year 190,000 American women are diagnosed with breast cancer. And the prognosis is still dismal for women whose breast cancer has spread to the lymph nodes and beyond. Yet the medical establishment remains adamantly and irrationally opposed to cancer microbe research. It is perhaps understandable from an economic viewpoint that the medical profession would not welcome a proposed infectious cause of cancer that would challenge the highly lucrative multibillion-dollar cancer industry.
Physicians confidently ignore cancer bacteria because they have been carefully taught in medical school that there are no significant bacteria detectible in cancer. They still believe that cancer microbes represent contaminant bacteria or bacteria of no significance. Thus, published reports of cancer microbe research are rarely cited and the subject remains virtually unknown.
The idea of a microbe with virus, bacteria, and fungal-like stages is also anathema to most doctors. However, over the past several decades the study of cell-wall deficient bacteria and "mycoplasma-like" bacteria (which are both bacterial and viral-like) indicates that microbes indeed have a complex life cycle. In 1919, when Ewing offered his damning opinion of cancer parasites, none of these microbiologic peculiarities were even recognised!
Fig. 2: Bacteria (in the form of cocci) cultured from a metastatic tumor of breast cancer which spread to the skin.   Acid-fast stain, magnified 1000 times.  Note the similar shape of these bacteria (identified as Staphyloccus epidermidis) to the coccoid forms identified in the original breast cancer tumor (Fig. 1)
In some instances, cancer microbe research appears to be deliberately suppressed. For example, the National Cancer Institute on its "cancer Facts" web page ( http://oncolink.upenn.edu/pdg/600911.html ) informs viewers about Virginia Livingston and states: "There is no scientific evidence to confirm her theories of cancer causation or to justify her treatments." Obviously, this official judgement is a blatant lie because, as we have noted, Livingston's discoveries have been confirmed by many competent scientists.
In addition, Livingston has written three books on the cancer microbe: Cancer: A New Breakthrough (1972), The Microbiology of Cancer (1977), and The Conquest of Cancer (1984).15-17 More recent books on bacteria in cancer include Alan Cantwell's The Cancer Microbe (1990) and Can Bacteria Cause Cancer? (1997) by David J Hess.18,19
Using acid-fast staining techniques, bacteria have been identified in breast cancer, lymphoma, Kaposi's sarcoma (the so-called "gay cancer" of AIDS) and other forms of cancer.20-22 Figure 1 shows bacteria identified in breast cancer, indicating that such microbes are already present within the tumour and are not laboratory contaminants. Microbes have also been identified in "normal" and cancer-free breast tissue removed at the time of surgery. This suggests that the bacteria are not "secondary invaders" because they are identifiable in areas before the tissue has been invaded by cancer.20 Figure 2 shows the appearance of a microbe cultured from the same breast cancer. Note how the size and shape and appearance of the microbes within the tumour (Fig. 1) approximates the appearance of the bacteria cultured from the metatastic spread of the tumour to the skin (Fig. 2).
The current lack of knowledge about the cause of advanced breast cancer has resulted in the recommendation of some very expensive and death-defying treatments for this horrendous disease. Bone marrow transplants, which carry a 5% death rate, are being proposed as a routine treatment, at a minimal cost of $100,000 per patient.
As described in Karen Stabiner's To Dance With the Devil: The New War on Breast Cancer (1997), the procedure is not pretty.23 First, a catheter is placed in a woman's chest to deliver the drugs. A surgical treatment is then performed to scrape out bone marrow from her pelvis, followed by 7 days of growth hormone injections. Then starts days of intravenous chemotherapy that can cause kidney and bladder damage. A catheter is placed in the bladder, followed by a round of intravenous BCNU, or carmustine, a drug that makes a woman feel like she is falling down drunk. Patients become sleepy, sullen, disoriented, agitated, and angry. Loss of bowel control and vomiting are common. After all this, women are put into isolation because the white count drops precipitously, making her vulnerable to all sorts of infections. There may be inexplicable spiking fevers and rashes, and the inevitable loss of hair. After three weeks, patients are allowed to go home where they are told to watch for, "interstitial pneumonitis," a potentially fatal after-effect if not diagnosed and treated early.
Bone marrow transplant for breast cancer is not guaranteed, nor is it considered a cure. Women have been known to die of cancer three months after the procedure, proving that some patients do not respond to chemotherapy no matter how high the dose.
Even with radiation, chemotherapy and surgery, the cost of dying of cancer is not cheap. At the price patients are paying, physicians should not have the luxury of being ignorant about cancer microbe research, particularly when these microbes can be identified in cancer tumours.
With 40,000 American women dying annually from breast cancer, it is time medical science re-evaluated the parasite of cancer that James Ewing so casually dismissed in 1919. Perhaps if he hadn't been so adamant about cancer microbe research, his colleagues might have been able to do more to save him when he himself eventually died of "the Big C."

REFERENCES
  1. Ewing J: The parasitic theory. In, Ewing J (Ed): Neoplastic Diseases (Ed1). Saunders, Philadelphia, 1919, pp 114-126.
  2. Nuzum JW: A critical study of an organism associated with a transplantable carcinoma of the white mouse. Surg Gynecol Obstet 33:167-175, 1921.
  3. Nuzum JW: The experimental production of metastasizing carcinoma in the breast of the dog and primary epithelioma in man by repeated inoculation of a micrococcus isolated from human breast cancer. Surg Gynecol Obstet 11:343-352, 1925.
  4. Young J: Description of an organism obtained from carcinomatous growths. Edinburgh MedJ (New Series) 27:212-221, 1921.
  5. Young J: An address on a new outlook on cancer: Irritiation and infection. Brit Med J, Jan 10, 1925, pp 60-64.
  6. Scott MJ: The parasitic origin of carcinoma. Northwest Med 24:162-166, 1925.
  7. Scott MJ: More about the parasitic origin of malignant epithelial growths. Northwest Med 25:492-498, 1925.
  8. Wuerthele Caspe (Livingston) V, Alexander-Jackson E, Anderson JA, et al: Cultural properties and pathogenicity of certain microorganisms obtained from various proliferative and neoplastic diseases. Amer J Med Sci 220:628-646, 1950.
  9. Wuerthele-Caspe Livingston V, Alexander-Jackson E: An experimental biologic approach to the treatment of neoplastic disease. J Amer Med Women's Asssn 20:858-866, 1965.
  10. Wuerthele Caspe Livingston V, Livingston AM: Demonstration of Progenitor Cryptocides in the blood of patients with collagen and neoplastic diseases. Trans NY Acad Sci 34(5):433-453, 1972.
  11. Wuerthele Caspe Livingston V, Livingston AM: Some cultural, immunological, and biochemical properties of Progenitor cyptocides. Trans NY Acad Sci 36(6):569-582, 1974.
  12. Alexander-Jackson E: A specific type of microorganism isolated from animal and human cancer: Bacteriology of the organism. Growth 18:37-51, 1954.
  13. Diller IC: Growth and morphologic variability of pleomorphic, intermittently acid-fast organisms isolated from mouse, rat, and human malignant tissues. Growth 26:181-209, 1962.
  14. Seibert FB, Yeomans F, Baker JA, et al: Bacteria in tumors. Trans NY Acad Sci 34(6):504-533, 1972.
  15. Wuerthele Caspe Livingston V: Cancer, A New Breakthrough. Nash Publishing Corp, Los Angeles, 1972.
  16. Livingston-Wheeler VWC, Wheeler OW: The Microbiology of Cancer. Livingston Wheeler Medical Clinic Publication, San Diego, 1977.
  17. Livingston-Wheeler VWC, Addeo EG: The Conquest of Cancer. Franklin-Watts, New York, 1984.
  18. Cantwell AR Jr: The Cancer Microbe: The Hidden Killer in Cancer, AIDS, and Other Immune Diseases. Aries Rising Press, Los Angeles, 1990.
  19. Hess DJ: Can Bacteria Cause Cancer? Alternative Medicine Confronts Big Science. New York University Press, New York, 1997.
  20. Cantwell AR Jr, Kelso DW: Microbial findings in cancer of the breast and in their metastases to the skin. J Dermatol Surg Oncol 7:483-491, 1981.
  21. Cantwell AR Jr: Histologic observations of variably acid-fast coccoid forms suggestive of cell wall deficient bacteria in Hodgkin's disease. A report of four cases. Growth 45:168-187, 1981.
  22. Cantwell AR Jr: Kaposi's sarcoma and variably acid-fast bacteria in vivo in two homosexual men. Cutis 32:58-64,68, 1983.
  23. Stabiner K: To Dance with the Devil: The New War on Breast Cancer. Delacourt Press, New York, 1997.
___________________________________________________________
Dr. Cantwell is a dermatologist, and an AIDS and cancer researcher. He is the author of The Cancer Microbe, and AIDS and the Doctors of Death (both published by Aries Rising Press, Los Angeles). Correspondence address: PO Box 29532, Los Angeles, CA 90029, USA. E-mail: AlanRCan@aol.com
===========================

Bacteria: The Ultimate Cause of Cancer?
by Alan Cantwell
New Dawn No. 76 (January-February 2003)
As a physician-dermatologist I have studied various aspects of the cancer microbe for over 30 years. In my book, The Cancer Microbe (Aries Rising Press, 1990), I recount a century of research by various scientists who have documented the reality and importance of bacteria associated with cancer. Despite a wealth of information on the microbiology of cancer, this body of work has been largely ignored.
      Why would medical science overlook the finding of bacterial elements in cancer, particularly when the treatment of advanced cancer is often abysmal and when the cause (or causes) of many types of cancer remain unknown? If and when the bacterial cause of cancer is widely accepted, it will be left to medical historians to determine why the medical community failed to recognise cancer bacteria. At the present time, it is fair to say that most physicians are either unaware of cancer microbe research, or ignore the published findings, or are openly hostile to this research.
      Unfortunately, medical doctors are limited by dogma about cancer-associated bacteria that eliminated a bacterial cause for cancer a century ago. In the late nineteenth century, when the bacterial cause of many infectious diseases was discovered, it was decided that cancer did not act like an infectious or contagious disease, and therefore it was concluded that bacteria were not causative.
      Although a few scientists later found highly unusual and pleomorphic bacteria, these bacteria were simply dismissed as “contaminants” – or as microbes that had “secondarily infected” cancerous growths. Furthermore, there was no single or consistent type of microbe found, and animals experimentally infected with cancer microbes did not give develop cancer. Thus, decades before the rise of virology and molecular biology, and at a time when “mycoplasma” forms of bacteria were not known, the medical establishment concluded that bacteria were not involved as a cause of cancer in any way. This conclusion has coloured medical thought about cancer to this day.
      Historically, it took centuries for doctors to recognise microbes as the cause of any disease. By the use of lenses, germs were discovered 200 years before physicians finally understood that microbes were capable of causing disease. For two centuries the dogma was that those exceedingly tiny “animacules” could not possibly be a threat to a grown person.
         Once something becomes dogma in medical science, it is very difficult to change medical thinking. Ordinarily, infectious bacteria can be easily recognised in disease because they can be seen microscopically in tissue sections from disease states. Sometimes careful “special staining” of tissue sections is necessary to make microbes more visible and more easily identifiable. (In cancerous tissue, the cancer microbe is most easily viewed with an “acid-fast” tissue stain, like the special stain employed to identify the mycobacteria that cause tuberculosis and leprosy).
          In this so-called modern era of medical science, one would think it impossible for disease experts to overlook disease-causing bacteria. However, when a new and deadly lung disease broke out among legionnaires in Philadelphia in July 1976, two hundred twenty-two people became ill and thirty-four died. The cause of the lung disease remained a medical mystery for over five months. Bacterial infection was ruled out when all tests were reported as negative. Fortunately, one astute and careful microbiologist finally discovered bacteria. Joe McDade at the Leprosy Branch of the CDC, was able to detect “unusual bacteria” in guinea pigs experimentally infected with lung tissue from the dead legionnaires. Further modification of bacterial culture methods finally allowed the isolation of causative bacteria, now known as Legionella pneumophila.            
      Yet another modern example of dogma-defying research is provided by recent studies proving that bacteria (Helicobacter pylori) are a common cause of stomach ulcers, which can eventually lead to stomach cancer and lymphoma. When I went to medical school, stomach ulcers were thought to be due to stress, lifestyle, or improper diet, and it was not uncommon to send ulcer patients to psychiatrists for analysis.
      For a century, physicians refused to believe that bacteria could cause ulcers because they thought bacteria could not live in the acid environment of the stomach. In 1982 a researcher, who was unable to convince his colleagues that bacteria could cause ulcers and gastritis, actually proved his case by drinking a culture of H. pylori. When he rapidly became ill with stomach symptoms, he admitted himself to the hospital where these bacteria were found to be associated with his gastric disease. It also turned out that these bacteria could indeed be detected in the stomach lining of stomach ulcers, but only when the tissue was stained in a special way to detect the bacteria. The CDC now claims that H. pylori causes more than 90% of duodenal ulcers and 80% of gastric ulcers. Approximately two-thirds of the world’s population is infected with these microbes.
      The present experience with ulcer-causing microbes proves that bacteria can indeed pop up in diseases where they are least expected. Such a caveat is appropriate for doctors who think they know everything about cancer and who pooh-pooh all aspects of cancer microbe research.
      One perennial complaint about the so-called cancer microbe is that is pleomorphic. For some reason, the idea that a proposed cancer germ could have more than one form is a threat to doctors and some microbiologists. Indeed the cancer germ has been described as having a virus like and fungus-like, as well as mycoplasma-like phase. Such a “life cycle” is deemed nonsense and microbiologic heresy.
      The many guises of the pleomorphic cancer microbe was studied extensively in the 1960s and 70s by four remarkable women scientists: Virginia Livingston (a physician); Eleanor Alexander-Jackson (a microbiologist); Irene Diller (a cytologist); and Florence Seibert, a chemist, tuberculosis expert, and inventor of the tuberculin skin test. Their individual and collaborative studies are essential reading to understand the proposed microbiology of cancer.
      This research clearly indicated that cancer microbes are best detected by special tissue testing (similar to those used in tuberculosis and leprosy research). And that the cancer germ has some similarity to pleomorphic tuberculosis germs.
      In all its many forms the tuberculosis microbe is certainly pleomorphic. (See the work of mycoplasma expert Lida H. Mattman.) The bacteria that cause TB are known as “mycobacteria”. Some forms of the bacillus are round “coccoid” forms; other forms are more typically “acid-fast” and “rod” forms. All mycobacteria form a phylogenetic link or bridge between the bacteria and the “higher” fungi. “Myco” is Greek for fungus. Ergo, myco-bacteria.
      Under appropriate conditions, bacteria can lose their cell wall and become amorphous, smaller, highly pleomorphic “cell-wall deficient forms.” Under suitable conditions, mycoplasma can enlarge to giant-sized forms (“Large bodies”) resembling fungal and spore-like forms. It is vital to be aware of and to recognise such unusual and hard-to-detect forms in tissue microscopic sections because, in my experience, this mycoplasmal form is the form the cancer microbe takes inside the body in human disease. Due to their small size, Mycobacteria form a bridge between (larger) bacteria and smaller) viruses. Microbiologists love to separate (and classify) viruses, bacteria, mycoplasma, and fungi, as distinct entities. In fact, there is interplay between all of them. It is well-known that bacteria can be infected with viruses. Nevertheless, scientists cannot seem to understand how microbes can change into virus-like, mycoplasma-like and fungus-like infectious agents.
       Because the cancer microbe is related to the bacteria that cause tuberculosis, it is helpful to compare the microbiology of cancer with what we know about the microbiology of mycobacteria and their production of various forms of clinical TB.
       Over the past half-century we have learned that TB is not always caused by the same identical germs. TB infections of the lung may be caused by various “atypical” mycobacteria that are not identical to the common Mycobacterium tuberculosis. Also some atypical mycobacteria have been discovered in various disease states that are not considered tuberculosis. Thus, there is no reason to expect all cancer-associated bacteria to be exactly the same germ.
      Furthermore, just as everyone who harbours H. pylori does not develop stomach ulcers, we should not expect all “cancer microbes” to produce cancer. Also it is not unreasonable to consider that cancer microbes have the potential to produce disease states that are not considered cancer.
      For many years I identified cancer microbes in a variety of disease states. In The Cancer Microbe, I show photomicrographs of cancer microbes in “autoimmune” diseases such as scleroderma, in AIDS-related Kaposi’s sarcoma, in enlarged lymph nodes in AIDS, in breast cancer, in lymphoma and Hodgkin’s disease, in a lung disease called interstitial pneumonitis, in sarcoidosis, in an immunoblastic sarcoma and even in a skin cancer.
      Not everyone who becomes infected with TB germs develops clinical tuberculosis. People can harbour the TB germ without ever becoming ill. The same is true for cancer microbes. Not everyone who carries them develops cancer.
      According to Virginia Livingston, the microbe is “ubliquitous.” It is found in various disease states and also can be found normally. This is a difficult for some medical doctors to believe because of the idea that an infectious agent must always infect. Livingston infuriated the scientific establishment by naming the cancer microbe “Progenitor cryptocides” – meaning “hidden killer”). She claimed the microbe was present in every cell. Due to its biochemical peculiarities, the organism was responsible for initiating life and for healing of tissue; and was the microbe ultimately responsible for eventual degeneration and death of all life. Such ideas, of course, are at odds with medical thought. However, my own studies have suggested that the cancer microbe is indeed ubiquitous and indestructible, which is further reason why it should be taken seriously, particularly in diseases that are poorly understood, like cancer and “diseases of unknown etiology.”
      Most importantly, cancer microbes are significant because they can be identified in the cancerous tissue in various forms of cancer. A few of these microbes can be seen in “normal” tissue, but strikingly larger numbers can be seen in the areas of the tumour. These microbes can be identified in “pre-cancerous” conditions, suggesting that these germs are present before the actual induction of the cancer. Furthermore, when cancer is “cured” by radiation and chemotherapy, the microbe can still be found in the damaged, previously cancerous areas.
      The reason we cannot “cure” cancer is that we cannot stop the destruction caused by these “hidden” and “unrecognised” bacterial elements. The reason antibiotics do not work well in cancer is because the microbes (in the mycoplasmal phase inside the body) are not susceptible to antibiotics.
      In cancer research, there is controversy as to whether cancer is one disease or many. For instance, could breast cancer and lung cancer and prostate cancer all be caused by the same agent. This would be deemed highly improbable, but if cancer microbes were shown to be associated with all three forms of cancer, the possibility that all three kinds of cancer might be related becomes more possible.
      When Livingston and colleagues injected cancer microbes into animals and chickens, some developed cancer, some developed degenerative and proliferative diseases, and some developed nothing of note. Apparently the individual “immunity” of the host was an important factor in terms of what response the cancer microbe would elicit.
      Tuberculosis infection can affect many parts of the body. Tuberculosis confined to the skin is very different disease when compared to TB of the lung or of the bone. Yet, all three manifestations of the disease are linked together because the TB germ can be found in all three. If cancer microbes are indeed proven as infectious agents in cancer – then various forms of cancer may indeed be manifestations of the same cancer microbe.
      There are many “factors” that determine whether a person will become infected with TB. Obviously, smoking is a big factor in lung cancer, radiation is a big factor in skin cancer and leukemia, and so on. However, in defense of the cancer microbe theory, it would be fair to suggest that anything that damages tissue would provide a soil for the possible development of cancer microbe activity in the tissue that could lead to cancer or the development of degenerative or proliferative disease.
      Finally, is cancer contagious? For a century physicians have said “no.” But now we know that certain viruses like HIV can lead to cancer. Certain wart “papilloma” viruses can be spread sexually and result in cervical cancer. If further infectious agents, like cancer microbes, are found in cancerous diseases, we may have to reevaluate the contagiosity of cancer.
      Obviously in this short communication, few people will be convinced that bacteria cause cancer. For me, it took many years of study, microscopic observation, and communication with microbiologists, pathologists, and colleagues, to become convinced that Livingston and her associates were correct in their claims of a cancer microbe.
      A wealth of knowledge pertaining to the cancer microbe (both pro and con) can be found on search engines such as www.google.com. Simply type in “cancer microbe”, “alan cantwell”, “virginia livingston”, “Eleanor Alexander-Jackson” and other names mentioned in this communication.
      For a list of scientific publications in medical journals pertaining to the microbiology of cancer, go to the Pubmed website (www.ncbi.nlm.nih.gov) and type in “Cantwell AR”, “Livingston VW”, “Alexander-Jackson E”, “Diller IC”, “Seibert FB.”
      For serious students of the microbiology of cancer, I would recommend the following books:
Cantwell, Alan: The Cancer Microbe (1990), Aries Rising Press, Los Angeles
Cantwell, Alan: AIDS: The Mystery and the Solution (1986), Aries Rising Press
Livingston, Virginia: Cancer: A New Breakthrough (1972), Livingston Clinic, San Diego
Livingston, Virginia: The Microbiology of Cancer (1977), Livingston Clinic
Hess, David: Can Bacteria Cause Cancer (1997), NY University Press
Mattman, Lida: Cell Wall Deficient Forms; Stealth Pathogens (1993), CRC Press
Reich, Wilhelm: The Cancer Biopathy (1973), Farrar, Straus, & Giroux, New York
Doctor Cantwell, retired from active practice, can be contacted via email at alanrcan@aol.com.  He is the author of The Cancer Microbe, published by Aries Rising Press, PO Box 29532, Los Angeles, CA 90029. The book may be ordered from Book Clearing House (www.bookch.com) or via 1-800-431-1579. Dr. Cantwell’s book Queer Blood: The Secret AIDS Genocide Plot, is available from New Dawn Book Service.
===============


No comments:

Post a Comment